
27/10/2023 11:38 Chapter 11. Design and testability - The Art of Unit Testing, Second Edition: with examples in C#

https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-11/8 1/18

Chapter 11. Design
and testability

This chapter covers

Benefiting from testability design goals

Weighing pros and cons of designing for testability

Tackling hard-to-test design

Changing the design of your code so that it’s more easily testable is a controversial issue
for some developers. This chapter will cover the basic concepts and techniques for
designing for testability. We’ll also look at the pros and cons of doing so and when it’s
appropriate.

First, though, let’s consider why you would need to design for testability in the first place.

11.1. Why should I care about testability in my design?

The question is a legitimate one. When designing software, you learn to think about what
the software should accomplish and what the results will be for the end user of the system.
But tests against your software are yet another type of user. That user has strict demands
for your software, but they all stem from one mechanical request: testability. That request
can influence the design of your software in various ways, mostly for the better.

In a testable design, each logical piece of code (loops, if s, switches, and so on) should
be easy and quick to write a unit test against, one that demonstrates these properties:

Runs fast

buy
now

27/10/2023 11:38 Chapter 11. Design and testability - The Art of Unit Testing, Second Edition: with examples in C#

https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-11/8 2/18

Is isolated, meaning it can run independently or as part of a group of
tests, and can run before or after any other test
Requires no external configuration
Provides a consistent pass/fail result

These are the FICC properties: fast, isolated, configuration-free, and consistent. If it’s hard
to write such a test, or if it takes a long time to write it, the system isn’t testable.

If you think of tests as a user of your system, designing for testability becomes a way of
thinking. If you were doing test-driven development, you’d have no choice but to write a
testable system, because in TDD the tests come first and largely determine the API design
of the system, forcing it to be something that the tests can work with.

Now that you know what a testable design is, let’s look at what it entails, go over the pros
and cons of such design decisions, discuss alternatives to the testable design approach, and
look at an example of hard-to-test design.

11.2. Design goals for testability

There are several design points that make code much more testable. Robert C. Martin has a
nice list of design goals for object-oriented systems that largely form the basis for the
designs shown in this chapter. See his article, “Principles of OOD,” at
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod.

Most of the advice I include here is about allowing your code to have seams—places where
you can inject other code or replace behavior without changing the original class. (Seams
are often talked about in connection with the Open-Closed Principle, which is mentioned in
Martin’s “Principles of OOD.”) For example, in a method that calls a web service, the web
service API can hide behind a web service interface, allowing you to replace the real web
service with a stub that will return whatever values you want or with a mock object.
Chapters 3–5 discuss fakes, mocks, and stubs in detail.

Table 11.1 lists basic design guidelines and their benefits. The following sections will discuss
them in more detail.

buy
now

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-3/ch03
https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-5/ch05
https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-11/ch11table01

27/10/2023 11:38 Chapter 11. Design and testability - The Art of Unit Testing, Second Edition: with examples in C#

https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-11/8 3/18

Table 11.1. Test design guidelines and benefits (view table figure)

Design guideline Benefit(s)
Make methods virtual by default. This allows you to override the methods in a

derived class for testing. Overriding allows
for changing behavior or breaking a call to
an external dependency.

Use interface-based designs. This allows you to use polymorphism to
replace dependencies in the system with
your own stubs or mocks.

Make classes nonsealed by default. You can’t override anything virtual if the
class is sealed (final in Java).

Avoid instantiating concrete classes inside
methods with logic. Get instances of classes
from helper methods, factories, inversion of
control containers such as Unity, or other
places, but don’t directly create them.

This allows you to serve up your own fake
instances of classes to methods that require
them, instead of being tied down to working
with an internal production instance of a
class.

Avoid direct calls to static methods. Prefer
calls to instance methods that later call
statics.

This allows you to break calls to static
methods by overriding instance methods.
(You won’t be able to override static
methods.)

Avoid constructors and static constructors
that do logic.

Overriding constructors is difficult to
implement. Keeping constructors simple will
simplify the job of inheriting from a class in
your tests.

Separate singleton logic from singleton
holders.

If you have a singleton, have a way to
replace its instance so you can inject a stub
singleton or reset it.

11.2.1. Make methods virtual by default

Java makes methods virtual by default, but .NET developers aren’t so lucky. In .NET, to be
able to replace a method’s behavior, you need to explicitly set it as virtual so you can
override it in a default class. If you do this, you can use the Extract and Override method
that I discussed in chapter 3.

An alternative to this method is to have the class invoke a custom delegate. You can
replace this delegate from the outside by setting a property or sending in a parameter to a
constructor or method. This isn’t a typical approach, but some system designers find this
approach suitable. The following listing shows an example of a class with a delegate that
can be replaced by a test.

buy
now

https://drek4537l1klr.cloudfront.net/osherove2/HighResolutionFigures/table_11.1.png
https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-3/ch03

27/10/2023 11:38 Chapter 11. Design and testability - The Art of Unit Testing, Second Edition: with examples in C#

https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-11/8 4/18

Using virtual methods is handy, but interface-based designs are also a good choice, as the
next section explains.

11.2.2. Use interface-based designs

Identifying “roles” in the application and abstracting them under interfaces is an important
part of the design process. An abstract class shouldn’t call concrete classes, and concrete
classes shouldn’t call concrete classes either, unless they’re data objects (objects holding
data, with no behavior). This allows you to have multiple seams in the application where
you could intervene and provide your own implementation.

For examples of interface-based replacements, see chapters 3–5.

Listing 11.1. A class that invokes a delegate that can be replaced by a test

public class MyOverridableClass
{
 public Func<int,int> calculateMethod=delegate(int i)
 {
 return i*2;
 };
 public void DoSomeAction(int input)
 {
 int result = calculateMethod(input);
 if (result==-1)
 {
 throw new Exception("input was invalid");
 }
 //do some other work
 }

}

 [Test]
 [ExpectedException(typeof(Exception))]
 public void DoSomething_GivenInvalidInput_ThrowsException()
 {
 MyOverridableClass c = new MyOverridableClass();
 int SOME_NUMBER=1;

 //stub the calculation method to return "invalid"
 c.calculateMethod = delegate(int i) { return -1; };

 c.DoSomeAction(SOME_NUMBER);
 }

buy
now

https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-3/ch03
https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-5/ch05

27/10/2023 11:38 Chapter 11. Design and testability - The Art of Unit Testing, Second Edition: with examples in C#

https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-11/8 5/18

11.2.3. Make classes nonsealed by default

Some people have a hard time making classes nonsealed by default because they like to
have full control over who inherits from what in the application. The problem is that if you
can’t inherit from a class, you can’t override any virtual methods in it.

Sometimes you can’t follow this rule because of security concerns, but following it should
be the default, not the exception.

11.2.4. Avoid instantiating concrete classes inside methods with logic

It can be tricky to avoid instantiating concrete classes inside methods that contain logic
because you’re so used to doing it. The reason for doing so is that later your tests might
need to control what instance is used in the class under test. If there’s no seam that
returns that instance, the task would be much more difficult unless you employ
unconstrained isolation frameworks, such as Typemock Isolator. If your method relies on a
logger, for example, don’t instantiate the logger inside the method. Get it from a simple
factory method, and make that factory method virtual so that you can override it later and
control what logger your method works against. Or use DI via a constructor instead of a
virtual method. These and more injection methods are discussed in chapter 3.

11.2.5. Avoid direct calls to static methods

Try to abstract any direct dependencies that would be hard to replace at runtime. In most
cases, replacing a static method’s behavior is difficult or cumbersome in a static language
like VB.NET or C#. Abstracting a static method away using the Extract and Override
refactoring (shown in section 3.4 of chapter 3) is one way to deal with these situations.

A more extreme approach is to avoid using any static methods whatsoever. That way, every
piece of logic is part of an instance of a class that makes that piece of logic more easily
replaceable. Lack of replaceability is one of the reasons why some people who do unit
testing or TDD dislike singletons; they act as a public shared resource that is static, and it’s
hard to override them.

Avoiding static methods altogether may be too difficult, but trying to minimize the number
of singletons or static methods in your application will make things easier for you while
testing.

11.2.6. Avoid constructors and static constructors that do logic

Things like configuration-based classes are often made static classes or singletons because
so many parts of the application use them. That makes them hard to replace during a test.
One way to solve this problem is to use some form of inversion of control (IoC) containers
(such as Microsoft Unity, Autofac, Ninject, StructureMap, Spring.NET, or Castle Windsor—all
open source frameworks for .NET).

buy
now

https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-3/ch03
https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-3/ch03lev1sec4
https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-3/ch03

27/10/2023 11:38 Chapter 11. Design and testability - The Art of Unit Testing, Second Edition: with examples in C#

https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-11/8 6/18

These containers can do many things, but they all provide a common smart factory, of
sorts, that allows you to get instances of objects without knowing whether the instance is a
singleton or what the underlying implementation of that instance is. You ask for an
interface (usually in the constructor), and an object that matches that type will be provided
for you automatically, as your class is being created.

When you use an IoC container (also known as a DI container), you abstract away the
lifetime management of an object type and make it easier to create an object model that’s
largely based on interfaces, because all the dependencies in a class are automatically filled
up for you.

Discussing containers is outside the scope of this book, but you can find a comprehensive
list and some starting points in the article, “List of .NET Dependency Injection Containers
(IOC)” on Scott Hanselman’s blog:
http://www.hanselman.com/blog/ListOfNETDependencyInjectionContainersIOC.aspx.

11.2.7. Separate singleton logic from singleton holders

If you’re planning to use a singleton in your design, separate the logic of the singleton class
and the logic that makes it a singleton (the part that initializes a static variable, for
example) into two separate classes. That way, you can keep the single responsibility
principle (SRP) and also have a way to override singleton logic.

For example, the next listing shows a singleton class, and listing 11.3 shows it refactored
into a more testable design.

Listing 11.2. An untestable singleton design

public class MySingleton
 {
 private static MySingleton _instance;

 public static MySingleton Instance
 {
 get
 {
 if (_instance == null)
 {
 _instance = new MySingleton();
 }
 return _instance;
 }
 }
 }

buy
now

http://www.hanselman.com/blog/ListOfNETDependencyInjectionContainersIOC.aspx
https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-11/ch11ex03

27/10/2023 11:38 Chapter 11. Design and testability - The Art of Unit Testing, Second Edition: with examples in C#

https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-11/8 7/18

Now that we’ve gone over some possible techniques for achieving testable designs, let’s get
back to the larger picture. Should you do it at all, and are there negative consequences of
doing it?

11.3. Pros and cons of designing for testability

Designing for testability is a loaded subject for many people. Some believe that testability
should be one of the default traits of designs, and others believe that designs shouldn’t
“suffer” just because someone will need to test them.

Listing 11.3. The singleton class refactored into a testable design

public class RealSingletonLogic #1
 {
 public void Foo()
 {
 //lots of logic here
 }
 }

public class MySingletonHolder #2
 {
 private static RealSingletonLogic _instance;
 public static RealSingletonLogic Instance
 {
 get
 {
 if (_instance == null)
 {
 _instance = new RealSingletonLogic();
 }
 return _instance;
 }
 }
 }

buy
now

27/10/2023 11:38 Chapter 11. Design and testability - The Art of Unit Testing, Second Edition: with examples in C#

https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-11/8 8/18

The thing to realize is that testability isn’t an end goal in itself but is merely a byproduct of
a specific school of design that uses the more testable object-oriented principles laid out by
Robert C. Martin (mentioned at the beginning of section 11.2). In a design that favors class
extensibility and abstractions, it’s easy to find seams for test-related actions. All the
techniques shown in this chapter so far are very much aligned with Martin’s principles:
classes whose behavior can be changed by inheriting and overriding, or by injecting an
interface, are “open for extension, but closed for modification”—the Open-Closed Principle.
Those classes usually also exhibit the DI principle and the IoC principle combined, to allow
constructor injection. By using the Single-Responsibility Principle you can, for example,
separate a singleton from its holding logic into a separate singleton holder class. Only the
Liskov substitution principle remains alone in the corner, because I couldn’t think of a single
example where breaking it also breaks testability. But the fact that your testable designs
seem to be somehow correlating with the SOLID principles does not necessarily mean your
design is good or that you have design skill. Oh no. Your design, most likely, like mine,
could be better. Grab a good book about this subject like Domain-Driven Design: Tackling
Complexity in the Heart of Software (Addison-Wesley Professional, 2003) by Eric Evans or
Refactoring to Patterns (Addison-Wesley Professional, 2004) by Joshua Kerievsky. How about
Clean Code by Robert Martin? Works too!

I find lots of badly designed, very testable code out there. Proof positive that TDD, without
proper design knowledge, is not necessarily a good influence on design.

The question remains, is this the best way to do things? What are the cons of such a
testability-driven design method? What happens when you have legacy code? And so on.

11.3.1. Amount of work

In most cases, it takes more work to design for testability than not because doing so
usually means writing more code. Even Uncle Bob, in his lengthy and occasionally funny
videos on http://cleancoders.com, likes to say (in a Sherlock Holmes voice, holding a pipe)
that he starts out with simplistic designs that do the simplest thing, and then he refactors
only when he sees the need for it.

You could argue that the extra design work required for testability points out design issues
that you hadn’t considered and that you might have been expected to incorporate in your
design anyway (separation of concerns, Single-Responsibility Principle, and so on).

On the other hand, assuming you’re happy with your design as is, it can be problematic to
make changes for testability, which isn’t part of production. Again, you could argue that
test code is as important as production code, because it exposes the API usage
characteristics of your domain model and forces you to look at how someone will use your
code.

From this point on, discussions of this matter are rarely productive. Let’s just say that more
code, and work, is required when testability is involved, but that designing for testability
makes you think about the user of your API more, which is a good thing.

buy
now

https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-11/ch11lev1sec2
http://cleancoders.com/

27/10/2023 11:38 Chapter 11. Design and testability - The Art of Unit Testing, Second Edition: with examples in C#

https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-11/8 9/18

11.3.2. Complexity

Designing for testability can sometimes feel a little (or a lot) like it’s overcomplicating
things. You can find yourself adding interfaces where it doesn’t feel natural to use interfaces
or exposing class-behavior semantics that you hadn’t considered before. In particular, when
many things have interfaces and are abstracted away, navigating the code base to find the
real implementation of a method can become more difficult and annoying.

You could argue that using a tool such as ReSharper makes this argument obsolete,
because navigation with ReSharper is much easier. I agree that it eases most of the
navigational pains. The right tool for the right job can help a lot.

11.3.3. Exposing sensitive IP

Many projects have sensitive intellectual property that shouldn’t be exposed but that
designing for testability would force to be exposed: security or licensing information, for
example, or perhaps algorithms under patent. There are workarounds for this—keeping
things internal and using the [InternalsVisibleTo] attribute—but they essentially defy
the whole notion of testability in the design. You’re changing the design but still keeping the
logic hidden. Big deal.

This is where designing for testability starts to melt down a bit. Sometimes you can’t work
around security or patent issues. You have to change what you do or compromise on the
way you do it.

11.3.4. Sometimes you can’t

Sometimes there are political or other reasons for the design to be done a specific way, and
you can’t change or refactor it (Soul Crushing Enterprise software projects, anyone?).
Sometimes you don’t have the time to refactor your design, or the design is too fragile to
refactor. This is another case where designing for testability breaks down—when the
environment prevents you. It’s an example of the influence factors discussed in chapter 9.

Now that we’ve gone through some pros and cons, it’s time to consider alternatives to
designing for testability.

11.4. Alternatives to designing for testability

It’s interesting to look outside the box at other languages to see other ways of working.

In dynamic languages such as Ruby or Smalltalk, the code is inherently testable because
you can replace anything and everything dynamically at runtime. In such a language, you
can design the way you want without having to worry about testability. You don’t need an
interface in order to replace something, and you don’t need to make something public to
override it. You can even change the behavior of core types dynamically, and no one will
yell at you or tell you that you can’t compile.

buy
now

https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-9/ch09

27/10/2023 11:38 Chapter 11. Design and testability - The Art of Unit Testing, Second Edition: with examples in C#

https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-11/8 10/18

In a world where everything is testable, do you still design for testability? The expected
answer is, of course, no. In that sort of world, you should be free to choose your own
design.

11.4.1. Design arguments and dynamically typed languages

Interestingly enough, since 2010 there has been growing talk in the Ruby community,
which I’ve also been part of, about SOLID (Single responsibility, Open-closed, Liskov
substitution, Interface segregation, and Dependency inversion) design. “Just because you
can, doesn’t mean you should” say some Rubyists, for example, Avdi Grimm, the author of
Objects on Rails available at http://objectsonrails.com. You can find many blog posts
ruminating about the state of design in the Rails community, such as
http://jamesgolick.com/2012/5/22/objectify-a-better-way-to-build-rails-applications.html.
Other Rubyists answer back with, “Don’t bother us with this overengineering crap.” Most
notably, David Heinemeier Hansson, a.k.a. DHH, the initial creator of the Ruby on Rails
framework, answers in a blog post “Dependency injection is not a virtue” at
http://david.heinemeierhansson.com/2012/dependency-injection-is-not-a-virtue.html.

Then fun ensues on Twitter, as you can imagine.

The funny thing about these kinds of discussions is just how much they remind me of the
same types of discussions that ensued around 2008–2009 in the .NET community and
specifically the recently deceased ALT.NET community. (Most of the ALT.NET folks
discovered Ruby or Node.js and moved on from .NET, only to come back a year later and do
.NET on the side “for the money.” Guilty!) The big difference here is that this is Ruby we’re
talking about. In the .NET community, there was at least a shred of half-baked evidence
that seemed to back the side of the “Let’s design SOLID” folks: you couldn’t test your
designs without having open/closed classes, for example, because the compiler would
thump your head if you even tried. So all the design folks said, “See? The compiler is trying
to tell you your design sucks,” which in retrospect is rather silly, because many testable
designs still seem to be overly sucky, albeit testable. Now, here come some Ruby people
and say they want to use SOLID principles? Why on earth would they want to do that?

It seems that there are some extra benefits to using SOLID: code is more easily maintained
and understood, which in the Ruby world can be a very big problem. Sometimes it’s a
bigger problem for Ruby than statically typed languages, because in Ruby you can have
dynamic code calling all sorts of nasty hidden redirected code underneath, and you can end
up in a world of hurt when that happens. Tests help, but only to a degree.

Anyway, what was my point? It was that initially, people didn’t even try to make the design
in Ruby software testable because the code was already testable. Things were just fine, and
then they discovered ideas about the design of code; this implies that design is a separate
activity, with different consequences than just simple testability-related code refactoring.

buy
now

http://objectsonrails.com/
http://jamesgolick.com/2012/5/22/objectify-a-better-way-to-build-rails-applications.html
http://david.heinemeierhansson.com/2012/dependency-injection-is-not-a-virtue.html

27/10/2023 11:38 Chapter 11. Design and testability - The Art of Unit Testing, Second Edition: with examples in C#

https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-11/8 11/18

Back to .NET and statically typed languages: consider a .NET-related analogy that shows
how using tools can change the way you think about problems and sometimes make big
problems a non-issue. In a world where memory is managed for you, do you still design for
memory management? Mostly, “no” would be the answer. If you’re working in languages
where memory isn’t managed for you (C++, for example), you need to worry about and
design for memory optimization and collection, or the application will suffer. This doesn’t
stop you from having properly designed code, but memory management isn’t the reason
for it. Code readability, usability, and other values drive it. You don’t use a straw man in
your design arguments to design your code, because you might be leaning on the wrong
stick to make your case (too many analogies? I know. It’s like...oh, never mind).

In the same way, by following testable, object-oriented design principles, you might get
testable designs as a by-product, but testability shouldn’t be a goal in your design. It’s
there to solve a specific problem. If a tool comes along that solves the testability problem
for you, there’ll be no need to design specifically for testability. There are other merits to
such designs, but using them should be a choice and not a fact of life.

The main problem with nontestable designs is their inability to replace dependencies at
runtime. That’s why you need to create interfaces, make methods virtual, and do many
other related things. There are tools that can help replace dependencies in .NET code
without needing to refactor it for testability. This is one place where unconstrained isolation
frameworks come into play.

Does the fact that unconstrained frameworks exist mean that you don’t need to design for
testability? In a way, yes. It rids you of the need to think of testability as a design goal.
There are great things about the object-oriented patterns Bob Martin presents, and they
should be used not because of testability, but because they make sense with respect to
design. They can make code easier to maintain, easier to read, and easier to develop, even
if testability is no longer an issue.

We’ll round out our discussion with an example of a design that’s difficult to test.

11.5. Example of a hard-to-test design

It’s easy to find interesting projects to dig into. One such project is the open source
BlogEngine.NET, whose source code you can find at
http://blogengine.codeplex.com/SourceControl/latest. You’ll be able to tell when a project
was built without a test-driven approach or any testability in mind. In this case, there are
statics all over the place: static classes, static methods, static constructors. That’s not bad
in terms of design. Remember, this isn’t a book about design. But this case is bad in terms
of testability.

Here’s a look at a single class from that solution: the Manager class under the Ping
namespace (located at
http://blogengine.codeplex.com/SourceControl/latest#BlogEngine/BlogEngine.Core/Ping/M
anager.cs):

buy
now

http://blogengine.codeplex.com/SourceControl/latest
http://blogengine.codeplex.com/SourceControl/latest#BlogEngine/BlogEngine.Core/Ping/Manager.cs
http://blogengine.codeplex.com/SourceControl/latest#BlogEngine/BlogEngine.Core/Ping/Manager.cs

27/10/2023 11:38 Chapter 11. Design and testability - The Art of Unit Testing, Second Edition: with examples in C#

https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-11/8 12/18

namespace BlogEngine.Core.Ping
{
 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text.RegularExpressions;

public static class Manager
 {

private static readonly Regex TrackbackLinkRegex = new Regex(
 "trackback:ping=\"([^\"]+)\"", RegexOptions.IgnoreCase |
 RegexOptions.Compiled);

 private static readonly Regex UrlsRegex = new Regex(
 @"<a.*?href=[""'](?<url>.*?)[""'].*?>(?<name>.*?)",
 RegexOptions.IgnoreCase | RegexOptions.Compiled);

 public static void Send(IPublishable item, Uri itemUrl)
 {
 foreach (var url in GetUrlsFromContent(item.Content))
 {
 var trackbackSent = false;

 if (BlogSettings.Instance.EnableTrackBackSend)
 {
 // ignoreRemoteDownloadSettings should be set to true
 // for backwards compatibilty with
 // Utils.DownloadWebPage.
 var remoteFile = new RemoteFile(url, true);
 var pageContent = remoteFile.GetFileAsString();

 var trackbackUrl = GetTrackBackUrlFromPage(pageContent);

 if (trackbackUrl != null)
 {
 var message =
 new TrackbackMessage(item, trackbackUrl, itemUrl);
 trackbackSent = Trackback.Send(message);
 }
 }

 if (!trackbackSent &&

buy
now

27/10/2023 11:38 Chapter 11. Design and testability - The Art of Unit Testing, Second Edition: with examples in C#

https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-11/8 13/18

We’ll focus on the send method of the Manager class. This method is supposed to send
some sort of ping or trackback (we don’t really care what those mean for the purposes of
this discussion) if it finds any kind of URLs mentioned in a blog post from a user. There are
many requirements already implemented here:

Only send the ping or trackback if a global configuration object is
configured to true .

 BlogSettings.Instance.EnablePingBackSend)
 {
 Pingback.Send(itemUrl, url);
 }
 }
 }

 private static Uri GetTrackBackUrlFromPage(string input)
 {
 var url =
 TrackbackLinkRegex.Match(input).Groups[1].ToString().Trim();
 Uri uri;

 return
 Uri.TryCreate(url, UriKind.Absolute, out uri) ? uri : null;
 }

 private static IEnumerable<Uri> GetUrlsFromContent(string content)
 {
 var urlsList = new List<Uri>();
 foreach (var url in
 UrlsRegex.Matches(content).Cast<Match>().Select(myMatch =>
 myMatch.Groups["url"].ToString().Trim()))
 {
 Uri uri;
 if (Uri.TryCreate(url, UriKind.Absolute, out uri))

 {
 urlsList.Add(uri);
 }
 }

 return urlsList;
 }
 }

}

buy
now

27/10/2023 11:38 Chapter 11. Design and testability - The Art of Unit Testing, Second Edition: with examples in C#

https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-11/8 14/18

If a ping isn’t sent, try to send a trackback.
Send a ping or trackback for any of the URLs you can find in the content
of the post.

Why do I think this method is really hard to test? There are several reasons:

The dependencies (such as the configuration) are all static methods, so
you can’t fake them easily and replace them without an unconstrained
framework.
Even if you were able to fake the dependencies, there’s no way to inject
them as parameters or properties. They’re used directly.
You could try to use Extract and Override (discussed in chapter 3) to call
the dependencies through virtual methods that you can override in a
derived class, except that the Manager class is static, so it can’t contain
nonstatic methods and obviously no virtual ones. So you can’t even
extract and override.
Even if the class wasn’t static, the method you want to test is static, so it
can’t call virtual methods directly. The method needs to be an instance
method to be refactored into extract and override. And it’s not.

Here’s how I’d go about refactoring this class (assuming I had integration tests):

1. Remove the static from the class.

2. Create a copy of the Send() method with the same parameters but not static. I’d
prefix it with Instance so it’s named InstanceSend() and will compile without clashing
with the original static method.

3. Remove all the code from inside the original static method, and replace it with
Manager().Send(item, itemUrl) ; so that the static method is now just a forwarding

mechanism. This makes sure all existing code that calls this method doesn’t break (a.k.a.
refactoring!).

4. Now that I have an instance class and an instance method, I can go ahead and use
Extract and Override on parts of the InstanceSend() method, breaking dependencies
such as extracting the call to BlogSettings.Instance.EnableTrackBackSend into its
own virtual method that I can override later by inheriting in my tests from Manager .

5. I’m not finished yet, but now I have an opening. I can keep refactoring and extracting
and overriding as I need.

Here’s what the class ends up looking like before I can start using Extract and Override:

buy
now

https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-3/ch03

27/10/2023 11:38 Chapter 11. Design and testability - The Art of Unit Testing, Second Edition: with examples in C#

https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-11/8 15/18

public static class Manager
 {
 ...

 public static void Send(IPublishable item, Uri itemUrl)
 {
 new Manager().Send(item,itemUrl);
 }
 public static void InstanceSend(IPublishable item, Uri itemUrl)
 {
 foreach (var url in GetUrlsFromContent(item.Content))
 {
 var trackbackSent = false;

 if (BlogSettings.Instance.EnableTrackBackSend)
 {
 // ignoreRemoteDownloadSettings should be set to true
 // for backwards compatibilty with
 // Utils.DownloadWebPage.
 var remoteFile = new RemoteFile(url, true);
 var pageContent = remoteFile.GetFileAsString();

var trackbackUrl = GetTrackBackUrlFromPage(pageContent);

 if (trackbackUrl != null)
 {
 var message =
 new TrackbackMessage(item, trackbackUrl, itemUrl);
 trackbackSent = Trackback.Send(message);
 }
 }

 if (!trackbackSent &&
 BlogSettings.Instance.EnablePingBackSend)
 {
 Pingback.Send(itemUrl, url);
 }
 }
 }

 private static Uri GetTrackBackUrlFromPage(string input)
 {
 ...
 }

buy
now

27/10/2023 11:38 Chapter 11. Design and testability - The Art of Unit Testing, Second Edition: with examples in C#

https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-11/8 16/18

Here are some things that I could have done to make this method more testable:

Default classes to nonstatic. There’s rarely a good reason to use a purely
static class in C# anyway.
Make methods instance methods instead of static methods.

There’s a demo of how I do this refactoring in a video at an online TDD course at
http://tddcourse.osherove.com.

11.6. Summary

In this chapter, we looked at the idea of designing for testability: what it involves in terms
of design techniques, its pros and cons, and alternatives to doing it. There are no easy
answers, but the questions are interesting. The future of unit testing will depend on how
people approach such issues and on what tools are available as alternatives.

Testable designs usually only matter in static languages, such as C# or VB.NET, where
testability depends on proactive design choices that allow things to be replaced. Designing
for testability matters less in more dynamic languages, where things are much more
testable by default. In such languages, most things are easily replaceable, regardless of the
project design. This rids the community of such languages from the straw-man argument
that the lack of testability of code means it’s badly designed and lets them focus on what
good design should achieve, at a deeper level.

Testable designs have virtual methods, nonsealed classes, interfaces, and a clear separation
of concerns. They have fewer static classes and methods, and many more instances of logic
classes. In fact, testable designs correlate to SOLID design principles but don’t necessarily
mean you have a good design. Perhaps it’s time that the end goal should not be testability
but good design alone.

We looked at a short example that’s very untestable and all the steps it would take to
refactor it into testability. Think how easily testable it would have been if TDD had been
used to write it! It would have been testable from the first line of code, and we wouldn’t
have had to go through all these loops.

This is enough for now, grasshopper. But the world out there is awesome and filled with
materials that I think you’d love to sink your teeth into.

11.7. Additional resources

 private static IEnumerable<Uri> GetUrlsFromContent(string content)
 {
 ...

}
}

buy
now

http://tddcourse.osherove.com/

27/10/2023 11:38 Chapter 11. Design and testability - The Art of Unit Testing, Second Edition: with examples in C#

https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-11/8 17/18

I find that many of the people who read this book go through the following transformations:

After they become comfortable with the naming conventions, they begin
to adopt others or create their own. This is great. My naming conventions
are good if you’re a beginner, and I still use them myself, but they’re not
the only way. You should feel comfortable with your test names.
They start looking at other forms of writing the tests, such as behavior-
driven development (BDD)–style frameworks like MSpec or NSpec. This is
great because as long as you keep the three important parts of
information (what you’re testing, under what conditions, and the
expected result), readability is still good. In BDD-style APIs, it’s easier to
set a single point of entry and assert multiple end results on separate
requirements, in a very readable way. This is because most BDD-style
APIs allow a hierarchical way of writing them.
They automate more integration and system tests, because they find unit
testing to be too low-level. This is also great, because you do what you
need to do to get the confidence you need to change the code. If you end
up with no unit tests in your project but still can develop at high speed
with confidence and quality, that’s awesome, and could I get some of
what you’re having? (It’s possible, but tests get very slow at some point.
We still haven’t found the magic way to make that happen fully.)

What about books?

One that complements the topics on this book in terms of design is Growing Object-Oriented
Software, Guided by Tests, by Steve Freeman and Nat Pryce.

A good reference book for patterns and antipatterns in unit testing is xUnit Test Patterns:
Refactoring Test Code, by Gerard Meszaros.

Working E�ectively with Legacy Code by Michael Feathers is a must-read if you’re dealing with
legacy code issues.

There’s also a more comprehensive and continuously (twice a year, really) updated list of
interesting books at ArtOfUnitTesting.com.

For some test reviews, check out videos I’ve made, reading open source projects’ tests and
dissecting how they could be better, at http://artofunittesting.com/test-reviews/.

I’ve also uploaded a lot of free videos, test reviews, pair-programming sessions, and test-
driven development conference talks to http://ArtOfUnitTesting.com and
http://Osherove.com/Videos. I hope these will give you even more information in addition
to this book.

You might also be interested in taking my TDD master class (available as online streaming
videos) at http://TDDCourse.Osherove.com.

buy
now

http://artofunittesting.com/test-reviews/
http://artofunittesting.com/
http://osherove.com/Videos
http://tddcourse.osherove.com/

27/10/2023 11:38 Chapter 11. Design and testability - The Art of Unit Testing, Second Edition: with examples in C#

https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-11/8 18/18

You can always catch me on twitter at @RoyOsherove, or just contact me directly through
http://Contact.Osherove.com.

I look forward to hearing from you!

sitemap

buy
now

http://contact.osherove.com/
https://livebook.manning.com/book/the-art-of-unit-testing-second-edition/chapter-11/sitemap.html

